
0

#1 pattern-aware extension to C# and VB

Reviewer’s Guide

1

Welcome Letter

(Please Read First – Product Positioning)

We’re proud to introduce PostSharp, a development tool designed to address the shortcomings of

conventional compilers and programming languages that do not support the concept of patterns.

Because of these shortcomings, developers spend up to 20% of their time writing repetitive code as they

implement patterns manually. We specifically developed PostSharp for pattern automation and it has

become the #1 best-selling pattern-aware compiler extension to C# and VB.

Started as an open-source project in 2004 and overwhelmed by its popularity, PostSharp soon became a

commercial product trusted by over 50,000 developers worldwide and over 1,000 leading corporations.

PostSharp is now used by more than 10% of all Fortune 500 companies including Microsoft, Intel, Bank

of America, PricewaterhouseCoopers, Phillips, BP, Volkswagen and Siemens.

PostSharp allows developers to eradicate boilerplate by offloading repeating work from humans to

machines. It contains ready-made implementations of the most common patterns such as Logging,

INofityPropertyChanged, Undo/Redo or Code Contracts and it also gives developers the tools to build

automation for custom patterns specific to their projects. Thanks to the ready-made threading design

patterns, developers can write thread-safe applications in C# and VB without rewriting them.

The result: shorter, cleaner code that’s easier to write and understand, contains fewer defects and is

less expensive to maintain. PostSharp typically reduces codebase by 5% to 25% with an average 19x

return on investment.

This reviewer’s guide was created to help you evaluate PostSharp and includes why customers should

consider PostSharp, a feature list, comparison with other tools and development approaches, return on

investment, useful links and instructions on how to get started with the product.

Get to know PostSharp, the #1 best-selling pattern aware compiler extension to C# and VB with over a

decade experience in boilerplate reduction.

Sincerely,

Gael Fraiteur

CEO and Principal Engineer

PostSharp Technologies

2

With PostSharp, you’re in good company

3

Table of Contents

Welcome Letter .. 1

Table of Contents .. 3

Problem: Existing Compilers Don’t Support Patterns ... 4

Solution: Pattern-Aware Compiler Extensions ... 6

5 Reasons to Consider PostSharp ... 8

Key Features .. 11

Q&A ... 13

Testimonials .. 15

How PostSharp Compares .. 16

Return on Investment ... 18

Screenshots ... 19

PostSharp Editions & Pricing ... 22

How to Get Started ... 23

Useful Resources ... 24

Contact Information .. 25

“PostSharp is a pretty amazing piece of software. Abstractions like

PostSharp are the whole point of what the computer is supposed to do for

us, work that’s not fun, like logging and transactions. So why not hide

that?”

Scott Hanselman, Principal Program Manager, Microsoft

4

Problem: Existing Compilers Don’t Support Patterns

Whether it’s architecture, carpentry or mechanics, patterns are essential to all construction and

engineering disciplines. Learning not only how to implement patterns, but also when and why to choose

them, is an important part of the education of professionals of these disciplines.

Software engineering is no exception. Patterns have been successfully applied to software architecture

and software design, two preliminary steps of software constructions. As a result, today’s software

engineers are trained to think in terms of patterns. However, when it comes to implementation,

developers don’t have the right tools.

Conventional programming languages miss a concept of patterns. Therefore, software developers are

forced to implement patterns by hand. Just like artisan carpenters would manufacture dozens of almost

(not totally) identical joints to build a cabinet, a software developer would add almost identical

exception handling logic to hundreds of functions by hand. The difference, however, is that the artisan

carpenter produces a piece of art, while the software developer builds a utilitarian application.

You would not hire artisan carpenters to build a utilitarian industrial building, would you?

Developers call this repetitive code boilerplate. Good developers consider boilerplate code as a boring

but necessary part of their work. However, as this white paper will show, boilerplate code is not

inevitable.

Boilerplate code is a major source of pain in enterprise development. It has the following consequences:

1. High development effort

2. Poor quality of produced software

3. Difficulty to add/modify functionality after first release

4. Slow ramp-up of new team members

1. High development effort

 Large codebases. Some application features require a large amount of repetitive code
(boilerplate) when implemented with existing mainstream compiler technologies.

 Reinventing the wheel. Solutions to problems like INotifyPropertyChanged are always being
reinvented because there is no reusable option within conventional programming languages.

2. Poor quality software

 High number of defects. Every line of code has a possibility of defect, but code that stems from
copy-paste programming is more likely than other to be buggy because subtle differences are
often overlooked.

 Multi-threading issues. Object-oriented programming does not deliver much value when it
comes to developing multi-threaded applications since it addresses issues at a low level of
abstraction with locks, events or interlocked accesses that can easily result in deadlocks or
random data races.

5

 Lack of robustness. Enterprise-grade features such as exception handling or caching are often
deliberately omitted because of the high amount of source code they imply, unintentionally
forbidden in some parts of the applications, simply left untested and unreliable.

3. Difficulty to add/modify functionality

 Unreadable code that’s difficult to maintain. Business code is often littered with low-level non-
functional requirements and is more difficult to understand and maintain, especially when the
initial developer left.

 Strong coupling. Poor problem decomposition results in duplicate code and strong coupling
making it very difficult to change the implementation of features like logging, exception
handling or INotifyPropertyChanged because it is often scattered among thousands of files.

4. Slow ramp-up of new team members

 Too much knowledge required. When new team members come to work on a specific feature,
they often must first learn about caching, threading and other highly technical issues before
being able to contribute to the business value: an example of bad division of labor.

 Long feedback loops. Even with small development teams, common patterns like diagnostics,
logging, threading, INotifyPropertyChanged and undo/redo can be handled differently by each
developer. Architects need to make sure new team members understand and follow the internal
design standards and have to spend more time on manual code reviews--delaying progress
while new team members wait to get feedback from code review.

6

Solution: Pattern-Aware Compiler Extensions

Pattern-aware programming extends conventional object-oriented programming with a concept of

pattern, which becomes a first-class element of the programming language.

Most mainstream programming languages can be extended with a concept of pattern, avoiding the cost

of rewriting applications in a new language.

Because patterns are supported by the compiler extension (100% compatible with your existing

compiler), they do not need to be manually implemented as boilerplate code. Features such as

INotifyPropertyChanged, logging, transactions are implemented in a cleaner, more concise way, making

development and maintenance much easier.

There are 4 reasons to consider using a Pattern-Aware Compiler Extension:

1. Helps you stop writing boilerplate code and deliver faster

2. You can build more reliable software

3. Makes it easier to add/modify functionality after first release

4. Helps new members contribute quicker

1. Helps you stop writing boilerplate code and deliver faster

 Fewer lines of code means fewer hours of work. Patterns are repetitive, with little or no
decision left to the developer. However, repetition is exactly what computers are good at. Let
the compiler do the repetitive work and save development time and costs immediately.

2. Helps you build more reliable software

 Cleaner code means fewer defects. With a pattern-aware compiler eliminating the boilerplate,
your code becomes easier to read, understand and modify, and contains fewer defects.

 Reliability becomes much more affordable. Because they no longer require so much manual
coding, reliability features such as caching or exception handling are much easier and cheaper to
implement, so you can spend your extra time building a more robust app.

3. Makes it easier to add/modify functionality after the first release

 Cleaner and shorter code is easier to understand. After the initial release, too much
development time is spent reading and analyzing source code, especially if the initial developer
left. With minimized boilerplate code, developers can easily focus on business logic and spend
much less time trying to understanding the code.

 Better architecture is future-proof. Using a pattern-aware compiler, features like logging,
exception handling or transactions are no longer scattered among thousands of files but they
are defined in one place, making it much easier and fast to modify when necessary.

4. Helps new members contribute quicker

 Achieve a better division of labor. Using a pattern-aware compiler makes the introduction of
new or junior team members less onerous since they can focus on simpler, more business logic-

7

oriented tasks rather than having to waste so much time learning complex architectural
structures.

 Implement a tighter feedback loop. A pattern-aware compiler can validate that hand-written
code respects a pattern or a model, and it can detect bugs at build time instead of during code
reviews, testing, or in production.

8

5 Reasons to Consider PostSharp

PostSharp is the #1 best-selling pattern-aware extension to C#/VB. It adds a concept of pattern to the

languages, resulting in a dramatic reduction of boilerplate code, lower development and maintenance

costs and fewer errors.

With PostSharp you can:

1. Get more productive in minutes with ready-made pattern implementations

2. Automate more complex patterns and remove more boilerplate

3. Build thread-safe apps--without a PhD

4. Maintain your existing codebase in C# or Visual Basic

5. Benefit from much better run-time performance

1. Get more productive in minutes with ready-made pattern implementations
PostSharp includes a number of ready-made pattern implementations found in .NET. Deep

integration with Visual Studio and the user interface of PostSharp ensures developers get productive

in just a few minutes.

 INotifyPropertyChanged Pattern. Automates the implementation of INotifyPropertyChanged
and automatically raises notifications for you. It also analyzes chains of dependencies between
properties, methods and fields in your source code, and understands that property getters can
access several fields and call different methods, or even depend on properties of other objects.

PostSharp eliminates all the repetition and lets you go from three lines of code per property to

one attribute per base class... so you will never forget to raise a property change notification

again.

 Undo/Redo Pattern. Makes the implementation of the end-users most-wanted feature easy and
affordable by recording changes at model level. Provides built-in user controls or allows you to
create your own. You can deliver the familiar Undo/Redo experience to your users without
getting stuck writing large amounts of code.

 Code Contracts. Provide validation for valid URLs, email addresses, positive numbers or not-null
values and many more, right out of the box. Allows you to use contract attributes without
limitations at any location in your codebase and validate methods, fields, properties and
parameters. This enables you to protect your code from invalid inputs with custom attributes.

 Logging Pattern. Adds comprehensive logging in a few clicks – without impact on your source
code – and lets you remove it just as quickly. Provides parameter and return values providing
added information for maintenance and support work. Supports most popular back-ends,
including log4net, NLog, Enterprise Library, System Console, System Diagnostics. You can trace
everything you need in minutes without cluttering your code.

9

2. Automate more complex patterns and remove more boilerplate
Besides the ready-made solutions, PostSharp provides the following tools and features to build

automation for advanced patterns:

 PostSharp Aspect Framework. PostSharp is hands down the most robust and exhaustive
implementation of aspect-oriented programming for .NET and was evolved into the world's best
pattern compiler. It is the most powerful toolset available to implement automation for your
own patterns.

 Largest choice of possible transformations. Includes decoration of methods, iterators and async
state machines, interception of methods, events or properties, introduction of interfaces,
methods, events, properties, custom attributes or resources, and more.

 Composition of several transformations to easily automate complex patterns.

 Dynamic aspect/advice providers. Addresses situations where it is not possible to add aspects
declaratively (using custom attributes) to the source code with dynamic aspect/advice
providers.

 Aspect inheritance. Apply an aspect to a base class, specify that you want it to be inherited and
all derived classes will automatically have the aspect applied to them. Relieves you from
implementing the aspects manually and ensures that all derived classes using this aspect's logic
are correct.

 Architecture framework. Validates hand-written source code against your own custom pattern
guidelines. It then express the rules in C# using the familiar System.Reflection API, extended
with features commonly found in decompilers, such as “find usage”, and more.

3. Build thread-safe apps – without a PhD
Starting new threads and tasks in .NET languages is simple, but ensuring that objects are thread-safe is

not with mainstream programming languages. That’s why PostSharp extends C# and VB with thread-

safety features.

 7 different threading models. Threading models are design patterns that guarantee your code
executes safely even when used from multiple threads.

Threading models raise the level of abstraction at which multi-threading is addressed. Unlike

working directly with locks and other low-level threading primitives, threading models decrease

the number of lines of code, the number of defects and reduce development and maintenance

costs – without having to have expertise in multi-threading.

PostSharp implements the following threading models: immutable, freezable, synchronized,

reader-writer synchronized, actor, thread affine, and thread unsafe.

 Model validation. Catches most defects during build or during single-threaded test coverage.

 Thread dispatching patterns. Causes the execution of a method to be dispatched to the UI
thread or to a background thread. Much easier than using nested anonymous methods.

10

 Deadlock detection. Causes an easy-to-diagnose exception in case of deadlock instead of
allowing the application to freeze and create user’s frustration.

4. Maintain your existing codebase in C# and VB
Despite the hype around functional programming languages, C#/VB and .NET remain an excellent

platform for enterprise development. PostSharp respects your technology assets and will work

incrementally with your existing code base – there is NO need for a full rewrite or redesign.

 Design neutrality. Unlike alternatives, PostSharp takes minimal assumptions on your code. It
does not force you to adopt any specific architecture or threading model. You can add aspects
to anything, not just interface/virtual methods. Plus, it is fully orthogonal from dependency
injection. You don’t have to dissect your application into components and interfaces in order to
use PostSharp.

 Plain C# and VB. PostSharp provides advanced features present in F#, Scala, Nemerle, Python,
Ruby or JavaScript, but your code is still 100% C# and VB, and it is still compiled by the proved
Microsoft compilers.

 Cross-platform. PostSharp supports the .NET Framework, Windows Phone, WinRT, Xamarin and
Portable Class Libraries.

 Standard skillset. No complex API. Reuse what you already know from C# and
System.Reflection.

5. Benefit from much better run-time performance
Start-up latency, execution speed and memory consumption matter. Whether you’re building a mobile

app or a back-end server, PostSharp delivers exceptional run-time performance.

 Build-time code generation. Unlike proxy-based solutions, PostSharp modifies your code at
build time. It also allows for much more powerful enhancements that produces dramatically
faster applications.

 No reflection. PostSharp does not rely on reflection at run-time. The only code that is executed
is what you can see with a decompiler.

 Build-time initialization. Many patterns make decisions based on the shape of the code which
they are applied to. With PostSharp, you can analyze the target code at build-time and store the
decisions into serializable fields. At runtime, the aspects will be deserialized and you won’t need
to analyze the code at run-time using reflection.

11

Key Features

INotifyPropertyChanged

Simple properties

Composite properties

Properties of child objects

Smart event triggering

False positive suppression

Support for Caliburn.Micro

Support for MVVM Light

Highly customizable

Undo/Redo

Record any change in fields and collections

Low impact on source code

Customizable granularity of operations

Customizable name of operations

Ready-made undo/redo buttons

Custom actions

Integrated with INotifyPropertyChanged

Code Contracts

Easy, using custom attributes

Apply to any field, property or parameter

Not limited to ASP.NET MVC or XAML

Inheritance – apply to even to interfaces

Not null, number ranges, URLS, email, …

Extensible

Localizable

Logging

Log anything in a single line.

Logging of parameter values.

Logging of return values.

Indentation.

Thread-safe.

Reentry-safe.

Support for log4net

Support for NLog

Support for Enterprise Library

Support for Diagnostics.Trace

Support for Console

Aggregatable (parent/child relationships)

Navigate children in tree structures

Automatically implements IDisposable

Thread Safety

Immutable Threading Model

Freezable Threading Model

Synchronized Threading Model

Reader-Writer Synchronized Threading Model

Actor Threading Model

Thread Affine Threading Model

Thread Unsafe Threading Model

Build-Time Validation

Run-Time Model Validation

Thread Dispatching

Deadlock Detection

Aspect-Oriented Programming

Wrap any method with try/catch/finally

Intercept any method

Intercept any field or property

Intercept any event

Introduce interfaces

Introduce methods

Introduce events and properties

Introduce managed resources

Introduce custom attributes

Build-Time Validation

Attribute Multicasting

Aspect Inheritance

Add aspects using XML

Support for Async and Iterator Methods

Call target code from aspect

Dynamic aspect providers (composite aspects)

Dynamic advice providers

Initializes aspects at build time for fast runtime

performance

12

Architecture Validation

Validates your code against pre-defined design

rules

Validates your code against custom rules

Combines code validation with code generation

Extended Reflection API

Syntax Tree Decompiler

Build server integration

Advanced Reflection

Broad Platform Support

.NET Framework 3.5, 4.0, 4.5

Silverlight 5.0

Windows Phone (WinRT) 8.0, 8.1

Windows Store (WinRT) 8, 8.1

Portable Class Libraries 4.0, 4.5, 4.6

Xamarin iOS

Xamarin Android

Visual Studio Integration

PostSharp Explorer

Pattern-aware syntax highlighting

Pattern-aware tooltips

Coding Guidance

Code Editor Enhancements

Aspect Browser

File and Line Number of Error Messages

Support

Commercially supported

Fully documented

Outstanding run-time performance

Get started under 30 minutes

“We’ve reduced a lot of boilerplate thanks to PostSharp. Less code means less defects

and bug-fixing.”

Frederik Williams, Software Developer, Queue-it

13

Q&A

Below are some of the most common questions about PostSharp:

I’ve tried such a tool in the past and it was difficult to understand my code

PostSharp comes with Visual Studio tooling that ensures you understand where and how patterns are

used in your code. PostSharp applies patterns during compilation without affecting your source code in

order to keep it clean. PostSharp Tools for Visual Studio push this information directly into Visual Studio

so you are always aware of these patterns.

PostSharp Explorer shows which patterns are used and how they affect the codebase. Pattern-aware

syntax highlighting shows which code is enhanced by patterns. Pattern-aware tooltips show which

patterns are applied to the current code.

Messing with MSIL feels kind of “dirty”

MSIL is a very stable and extremely well specified ECMA standard with several open-source

implementations. MSIL evolves much more slowly than the C# or VB language, which allows PostSharp

to remain so stable.

Microsoft Code Contracts, Microsoft Code Analysis and several other commercial tools also work on

MSIL rewriting.

Much of PostSharp benefits is possible with dependency injection (IoC containers)

Dependency injection is like a tractor on the highway: it’s a great tool but often not the best one for that

job.

Proxy-based AOP, which is made possible by dependency injection and IoC containers, makes a step in

the right direction. However, the technology it relies on (dynamic proxies) puts severe constraints on

what can be done. Basically, you can only intercept interface or virtual methods. Therefore, the number

of patterns you can implement using proxy-based AOP is very limited.

Additionally, proxy-based AOP forces you to dissect your application into components and interfaces of

meaningless granularity, so you will find yourself changing your architecture (with dependency injection)

to get a benefit that is inherent to the technology of dependency injection, but just a side effect of it.

Finally, proxy-based AOP does not work on all platforms and is much less efficient than PostSharp at

runtime.

The only right way to have thread safety is to use purely functional languages

Purely functional languages are thread-safe because they strictly follow the Immutable pattern.

PostSharp also offer the Immutable pattern along with other popular threading models.

PostSharp does not force you into a specific programming model. Unlike functional programming, which

is mainly popular in academic circles and in some specific industry niches, PostSharp follows a pragmatic

approach where thread safety is achieved through a combination of build-time and run-time

14

verification. Because PostSharp does not try to reach 100% provable soundness at build time, it can

focus on providing the maximum thread safety commercially realistic in a business setting.

Note that PostSharp’s standard of thread safety would be insufficient for operating system kernels,

aeronautic/space software, real-time financial trading or control of nuclear power plants, but these

pieces of critical software typically cost an order of magnitude more than typical business applications.

Compilation will be slower

Yes, as PostSharp introduces additional steps into the compilation, there is a performance cost. This is

the same for e.g. custom tools run before C# compiler is executed such as XAML compiler. How large

this cost is, mostly depends on how extensively PostSharp transforms the original program which mostly

depends on how much PostSharp is leveraged. For comparison, PostSharp is generally a few times faster

than FxCop, which is frequently run for every build in larger companies.

Do I have to replace my existing compiler?

No. PostSharp is compatible with your existing Microsoft compiler, providing the tooling and user

experience you’re used to, including light-bulb integration or errors and warnings displayed in the Visual

Studio Error List.

”Before PostSharp, I experimented with several alternatives, but all of them shared a common

critical problem: terrible runtime performance. PostSharp solves this by doing most of its work

at compile time, so everything runs smoothly at runtime.”

Daniel Crabtree, Director, Rekur Ltd.

15

Testimonials

“PostSharp is very easy to use. Releasing developers from writing boilerplate code helps

my team complete the features faster.”

Bernd Hengelein, Software Architect, Siemens Audiology

"PostSharp allows us to develop our applications a lot quicker, we have a lot fewer errors

as we catch them at compile time, and it also enables us to get new developers to the

projects very quickly."

Adam Greene, Lead Software Architect, Cognitive X Solutions

“The new code is much less complex and much easier to maintain. This is what really

saves time and money in the long run.”

Daniel Wolf, Project Manager, mobileX AG

“Thanks to PostSharp, we were able to localize over 95 percent of the game with just one

line of code and save potentially hundreds of man hours over the lifetime of the game.”

Yan Cui, Senior Backend Developer, Gamesys

“By using PostSharp, we've been able to consolidate and vastly simplify our code,

making it more readable and maintainable. It's allowed us to more consistently

leverage code throughout the code base without having to continually rewrite the same

functionality over and over again.”

Mike Lawton,Manager of Software Engineering, DaProSystems Inc.

16

How PostSharp Compares

Please visit the page https://www.postsharp.net/alternatives to view the following comparative

matrices that show how PostSharp compares to other tools and development approaches.

PostSharp vs. tools you already know

PostSharp vs AOP and meta-programming

https://www.postsharp.net/alternatives

17

Detailed Comparison Matrix

18

Return on Investment

Let’s analyze the return on investment of a mid-sized enterprise development team working on a

business software:

Consider a 20 person team working on a 3 year project. Suppose the average cost per team member and

per year is $100,000, all taxes and overhead costs inclusive (an understatement in many countries). That

means that the total project cost is $6,000,000. According to empirical research, a 20 person team

would produce approximately 430,000 lines of code during 3 years. This gives us an approximate cost of

$14 per line of code.

While we cannot quantify all benefits of using PostSharp, customer data shows that using PostSharp, the

number of lines of code required to implement a same set of features decreases by 5% to 25%. Let’s

take a conservative 10% reduction.

Since the cost of developing and debugging software is roughly linear to its number of lines of code, it

means that we can expect the total project cost to be $600,000 lower when using PostSharp.

Now let’s compare this to software license costs. Although the whole team benefits from having a

smaller code base, only developers (suppose there are 15 developers, 4 testers and 1 manager) need to

purchase a license. PostSharp is in a typical price range for development tools ($600 - $2000 per

developer for the first year, 30%-40% maintenance fee for the next 2 years) so we can estimate that the

total licensing cost is $20,000.

Let’s add the training cost. Typically, just the architecture team (say 2 people) need to acquire a deep

understanding (say 3 days). The rest of the development team (13 people) just need a superficial

understanding of the concepts (say ½ day). Thus the cost of training the team would be under $10,000.

We have a total cost of adoption of $30,000 for a return of $600,000. Despite all the conservative

projections, this is still a 19x return on investment! And we just took into account the quantifiable

benefits. Hidden multithreading defects, late arrival to market or security leaks can cost you millions and

even billions of dollars, and pattern–aware compilers help address these problems too.

Most software has nowhere near this kind of return – making PostSharp one of the most profitable

approaches you can consider.

“Over the years, PostSharp has helped us save over tens of thousands lines of code.”

Yan Cui, Senior Backend Developer, Gamesys

19

Screenshots

Please visit the page https://www.postsharp.net/pressroom to download the screenshots.

Figure 1 Implementing a pattern can be as easy as selecting an action in the Visual Studio lightbulb.

https://www.postsharp.net/pressroom

20

Figure 2 A look of the wizard that helps add logging to your project.

Figure 3 The tooltips show you which aspects have been applied to your code.

21

Figure 4 PostSharp Explorer shows which aspects are present in your solution and to which targets they have been applied.

Figure 5 PostSharp Metrics tool window shows how many lines of code you wrote manually and how many you probably saved
thanks to PostSharp.

22

PostSharp Editions & Pricing

Bundle Prices

 PostSharp
Express

PostSharp
Professional

PostSharp
Ultimate

Price Free $369 $669

Summary Free but limited
to 10 classes per

project

The #1
aspect-oriented

framework
for .NET.

The complete
and unlimited

product.

PostSharp Aspect Framework
Automate implementation of
custom patterns

Limited Unlimited Unlimited

PostSharp Diagnostics Library
Logging

Limited Unlimited Unlimited

PostSharp Model Library
INotifyPropertyChanged,
Undo/Redo, Code Contracts,
Aggregatable, Disposable

Limited Limited Unlimited

PostSharp Threading Library
Threading Models, Thread
Dispatching, Deadlock Detection

Limited Limited Unlimited

PostSharp Architecture Framework
Automate validation of hand-written
code against guidelines

Not Included Unlimited Unlimited

Premium Support
1 year of premium support and free
upgrades

Not Included Included Included

Limited means maximum 10 enhanced classes per project and 50 per solution.

Library Prices
Pattern libraries are available for separate purchase for the following process:

Library Price

PostSharp Diagnostics Library $44

PostSharp Threading Library $259

PostSharp Model Library $169

Licensing Model
All commercial licenses are floating (non-named) and perpetual licenses.

23

How to Get Started

Five simple steps to get started PostSharp:

1. Download and install PostSharp. In this step, you are actually just installing the user interface:

PostSharp Tools for Visual Studio.

2. During installation, choose between a 45-day trial of PostSharp Ultimate, the free PostSharp

Express, or you can enter a license key for a professional edition of PostSharp.

3. After having installed the PostSharp Tools, in Visual Studio, move the caret to the class or

method to enhance and choose the pattern from the light bulb or smart tag.

4. PostSharp is deployed as a NuGet package. During installation, PostSharp edits your project file

and inserts itself in the build process. Therefore, there is no friction with build servers.

5. Build your project. PostSharp post-processes the output of the C# or VB compiler. It opens the

intermediate assembly, adds the behaviors required by the aspects, then produces a new

assembly.

https://www.postsharp.net/download

24

Useful Resources

Product information https://www.postsharp.net/product

23-Minute PostSharp Demo https://www.postsharp.net/documentation/video?id=143656221

Case Studies and Customers https://www.postsharp.net/customers

Reference Documentation http://doc.postsharp.net/

Code Samples http://samples.postsharp.net/

Press & Media Resources https://www.postsharp.net/pressroom

https://www.postsharp.net/product
https://www.postsharp.net/documentation/video?id=143656221
https://www.postsharp.net/customers
http://doc.postsharp.net/
http://samples.postsharp.net/
https://www.postsharp.net/pressroom

25

Contact Information

Primary Technical Contact

Gael Fraiteur

CEO and Principal Engineer

gael@postsharp.net

+1 866 576 5361

Press Contact

Iveta Moldavcuk

PR Manager

iveta@postsharp.net

+1 866 576 5361

About PostSharp Technologies

PostSharp is the #1 best-selling pattern-aware extension to C# and VB. It allows developers to eradicate

boilerplate by offloading repeating work from humans to machines. PostSharp contains ready-made

implementations of the most common patterns and gives you the tools to build automation for your

own patterns.

PostSharp is trusted by over 50,000 developers worldwide and over 10% of all Fortune 500 companies

including Microsoft, Intel, Bank of America, Phillips, NetApp, BP, PricewaterhouseCoopers, Volkswagen,

Hitachi, Siemens, and Oracle rely on PostSharp to reduce their development and maintenance costs.

For more information, please visit https://www.postsharp.net/.

mailto:gael@postsharp.net
mailto:iveta@postsharp.net
https://www.postsharp.net/

